Latest News

Uncovering Uncultivated Microbes in the Human Gut

A human’s health is shaped both by environmental factors and the body’s interactions with the microbiome, particularly in the gut. Genome sequences are critical for characterizing individual microbes and understanding their functional roles. However, previous studies have estimated that only 50 percent of species in the gut microbiome have a sequenced genome, in part because many species have not yet been cultivated for study.

<p>The microbes in this water sample can tell scientists about the ecosystem as a whole. (Credit: iStock.com/Irina Vodneva)</p>

Using Tiny Organisms to Unlock Big Environmental Mysteries

When you hear about the biological processes that influence climate and the environment, such as carbon fixation or nitrogen recycling, it’s easy to think of them as abstract and incomprehensibly large-scale phenomena. Yet parts of these planet-wide processes are actually driven by the tangible actions of organisms at every scale of life, beginning at the smallest: the microorganisms living in the air, soil, and water. And now Berkeley Lab researchers have made it easier than ever to study these microbial communities by creating an optimized DNA analysis technique.

<p>Cartoon schematic of electron transport chain of photosynthesis in which energy from sunlight creates high-energy electrons that are shuttle among various protein complexes. The electron shuttling process is coupled with proton pumps that power ATP formation by ATP synthase.  An electron can flow linearly to power NADPH formation or it can be cycled between photosystem I and NDH to boost ATP synthesis. (Credit: Thomas Laughlin/UC Berkeley and Berkeley Lab).</p>

New Molecular Blueprint Advances Our Understanding of Photosynthesis

Researchers at Berkeley Lab have used one of the most advanced microscopes in the world to reveal the structure of a large protein complex crucial to photosynthesis, the process by which plants convert sunlight into cellular energy. The finding, published in the journal Nature, will allow scientists to explore, for the first time, how the complex functions and could have implications for the production of a variety of bioproducts, including plastic alternatives and biofuels.