UCI-led study reveals crucial mechanisms contributing to the disease
UCI-led study reveals crucial mechanisms contributing to the disease
New study provides groundbreaking insights into the evolution of lizards
Every year, hydraulic fracturing of oil and gas wells generates billions of gallons of contaminated water. Scientists at Berkeley Lab and the CO School of Mines believe microbes could be the key to turning this waste into a resource.
UCI-led study points toward new ways to prevent disease transmission
Outreach program for second- to eighth-graders promotes scientific thinking, interest in STEM careers
NIH funding supports continued research into early-life origins of mental disorders
Nearly ten years ago, a group of Israeli clinical researchers emailed Berkeley Lab geneticist Len Pennacchio to ask for his team’s help in solving the mystery of a rare inherited disease that caused extreme, and sometimes fatal, chronic diarrhea in children. Now, following an arduous investigative odyssey that expanded our understanding of regulatory sequences in the human genome, the multinational scientific group has announced the discovery of the genetic explanation for this disease.
Berkeley Lab recently received federal approval to proceed with preliminary design work for a state-of-the-art building that would revolutionize investigations into how interactions among microbes, water, soil, and plants shape entire ecosystems. Research performed in the building could help address many of today’s energy, water, and food challenges.
A team led by Berkeley Lab faculty biochemist Daniel Minor has discovered how a protein produced by bullfrogs binds to and inhibits the action of saxitoxin, the deadly neurotoxin made by cyanobacteria and dinoflagellates that causes paralytic shellfish poisoning.