Latest News

<p>The multi-qubit chip has five superconducting transmon qubits and associated readout resonators. When cooled to absolute zero, such a device can compute things like quantum simulations of advanced materials. Qubit chip image courtesy of the Quantum Nanoelectronics Laboratory, UC Berkeley.</p>

Quantum Computation to Tackle Fundamental Science Problems

The observation that the number of transistors on a computer chip doubles roughly every two years has set the pace for our modern digital revolution—making smartphones, personal computers and current supercomputers possible. But some of the big problems that scientists need to tackle might be beyond the reach of conventional computers. Researchers at Berkeley Lab have been exploring a drastically different kind of computing architecture based on quantum mechanics to solve some of science’s hardest problems.

<p>As the grid modernizes, communications between the grid and solar panels will standardize, providing both more resiliency as well as a vulnerability that could be exploited by hackers. (Credit: UC San Diego)</p>

Berkeley Lab Aims to Strengthen the Cybersecurity of the Grid

As the U.S. electricity grid continues to modernize, it will mean things like better reliability and resilience and lower environmental impacts, as well as new computing and communications technologies to monitor and manage the increasing number of devices that connect to the grid. However, that enhanced connectivity for grid operators and consumers also opens the door to hackers.