Berkeley Lab will lead a new $9 million project aimed at removing technical barriers to commercialization of enhanced geothermal systems (EGS), a clean energy technology with the potential to power 100 million American homes.
Berkeley Lab will lead a new $9 million project aimed at removing technical barriers to commercialization of enhanced geothermal systems (EGS), a clean energy technology with the potential to power 100 million American homes.
A Berkeley Lab-led report highlights a new, compact technique for producing beams with precisely controlled energy and direction that could “see” through thick steel and concrete to more easily detect and identify concealed or smuggled nuclear materials for national security and other applications.
The Department of Energy’s Joint BioEnergy Institute (JBEI), led by Berkeley Lab, is one of four DOE Bioenergy Research Centers to receive funding in support of innovative research on biofuels and bioproducts. The four centers will receive a total of $40 million. The award marks the next research phase at JBEI, originally established in 2007.
India is pushing hard to electrify its automobile market, aiming to sell only electric vehicles (EVs) by 2030. But what impact will that shift have on the country’s utilities and the grid? A new report by scientists at Berkeley Lab has found that the prospective EV expansion will deliver economic benefits, help integrate renewable energy, and significantly reduce imports of foreign oil.
Researchers at the DOE Joint BioEnergy Institute, in collaboration with the Joint Genome Institute, are reporting the first whole-genome sequence of a mutant population of Kitaake, a model variety of rice. Their high-density, high-resolution catalog of mutations facilitates the discovery of novel genes and functional elements that control diverse biological pathways.
A new look inside 2,000-year-old concrete – made from volcanic ash, lime, and seawater – has provided new clues to the evolving chemistry and mineral cements that allow ancient harbor structures to withstand the test of time.
Electrostatic forces known as phosphate steering help guide the actions of an enzyme called FEN1 that is critical in DNA replication and repair, finds a new study led by Berkeley Lab researchers. The findings help explain how FEN1 distinguishes which strands of DNA to target, revealing key details about a vital process in healthy cells as well as providing new directions for cancer treatment research.
It turns out your skin is crawling with single-celled microorganisms – and they’re not just bacteria. A study by Lawrence Berkeley National Laboratory and the Medical University of Graz has found that the skin microbiome also contains archaea, a type of extreme-loving microbe, and that the amount of it varies with age.
A global hunt for the universe’s missing matter is underway, and this autumn everyone is invited to join in. On and around October 31, 2017, events around the world will celebrate the hunt for the universe’s unseen “dark matter.”
Berkeley Lab researchers are proposing a new method for sending acoustic waves through water that could dramatically increase communication speeds for scuba divers, deep sea robots, and remote ocean monitors. By taking advantage of the dynamic rotation generated as waves travel, the researchers were able to pack more channels onto a single frequency, effectively increasing the amount of information capable of being transmitted.