To address PPE shortages during the pandemic, scientists at Berkeley Lab and UC Berkeley are developing a rechargeable, reusable, anti-COVID N95 mask and a 3D-printable silicon-cast mask mold.
To address PPE shortages during the pandemic, scientists at Berkeley Lab and UC Berkeley are developing a rechargeable, reusable, anti-COVID N95 mask and a 3D-printable silicon-cast mask mold.
Berkeley Lab has a long history of participating in neutrino experiments and discoveries in locations ranging from a site 1.3 miles deep at a nickel mine in Ontario, Canada, to an underground research site near a nuclear power complex northeast of Hong Kong, and a neutrino observatory buried in ice near the South Pole.
The American Association for the Advancement of Science, the world’s largest general scientific society, today announced that 489 of its members, among them eight scientists at Berkeley Lab, have been named Fellows. This lifetime honor, which follows a nomination and review process, recognizes scientists, engineers, and innovators for their distinguished achievements in research and other disciplines toward the advancement or applications of science.
A team of researchers led by Berkeley Lab has developed a method to fabricate a one-dimensional array of individual molecules and to precisely control its electronic structure.
Berkeley Lab researchers have achieved unprecedented success in modifying a microbe to efficiently produce a compound of interest using a computational model and CRISPR-based gene editing. Their approach could dramatically speed up the research and development phase for new biomanufacturing processes, getting advanced bio-based products, such as sustainable fuels and plastic alternatives, on the shelves faster.
Borrowing a page from high-energy physics and astronomy textbooks, a team of physicists and computer scientists at Berkeley Lab has successfully adapted and applied a common error-reduction technique to the field of quantum computing.
The effort to construct GRETA, a cutting-edge spherical array of high-purity germanium crystals that will measure gamma-ray signals to reveal new details about the structure and inner workings of atomic nuclei, has received key approvals needed to proceed toward full build-out.
In this Q&A, Sinéad Griffin, a staff scientist in Berkeley Lab’s Materials Sciences Division and Molecular Foundry, shares her thoughts on her search for light dark matter, the ultimate materials design challenge, and Berkeley Lab’s collaborative “team science” culture.
New U.S. Department of Energy funding totaling $18 million, including $1 million for user support, will be distributed among 10 partner institutions – including Berkeley Lab – and will continue and expand LaserNetUS operations for three years.
To see, in microscopic detail, what makes the diabolical ironclad beetle so uniquely sturdy, researchers used an X-ray imaging technique at Berkeley Lab’s Advanced Light Source synchrotron, and other techniques, to explore a protective covering known as the “elytra,” its abdomen, and other parts.