Scientists from Berkeley Lab and PNNL have found that genes and early environment play big roles in shaping the gut microbiome. The microbes retained a clear “signature” formed where the mice were first raised, and the characteristics carried over to the next generation. The findings could potentially be used to develop designer diets optimized to an individual’s microbiome.
Honor is conferred for distinguished contributions to their fields
An international team of scientists is providing new insight into the process by which plants use light to split water and create oxygen. In experiments led by Berkeley Lab scientists, ultrafast X-ray lasers were able to capture atomic-scale images of a protein complex found in plants, algae, and cyanobacteria at room temperature.
Berkeley and Illinois researchers have bumped up crop productivity by as much as 20 percent by increasing the expression of genes that result in more efficient use of light in photosynthesis. Their work could potentially be used to help address the world’s future food needs.
Scientists have produced detailed 3-D visualizations that show an unexpected connectivity in the genetic material at the center of cells, providing a new understanding of a cell’s evolving architecture.
UCI scientist uses bioluminescence to shed light on multicellular interactions
Berkeley Lab scientists have found a way to engineer the atomic-scale chemical properties of a water-splitting catalyst for integration with a solar cell, and the result is a big boost to the stability and efficiency of artificial photosynthesis. The research comes out of the Joint Center for Artificial Photosynthesis (JCAP), established to develop a cost-effective method of turning sunlight, water, and carbon dioxide into fuel.
Berkeley Lab-developed tech enabling energy-saving roofs, long-lived batteries, better data from X-ray experiments, safer drinking water, and reduced carbon dioxide in the atmosphere have received 2016 R&D 100 awards.