Latest News

AUI and NRAO Announce 2022 NAC Bridge Scholarship Recipients

AUI and NRAO Announce 2022 NAC Bridge Scholarship Recipients

AUI and the National Radio Astronomy Observatory (NRAO) have announced the recipients of the 2022 AUI Board of Trustees NAC Bridge Scholarship Award. Now in its second year, the scholarship recognizes the academic accomplishments of National Astronomy Consortium (NAC) alums and assists them in the transition from undergraduate to graduate programs. 

Amidst the excitement of beginning graduate school and the financial considerations of tuition, there can be additional financial burdens related to moving to a new location and establishing a new residence. The AUI Board of Trustees established the new NAC scholarship award in 2021 to help NAC alums manage these expenses during the transition to the next phase of their academic careers. 

This year, six NAC alums have accepted offers from outstanding graduate programs around the country. Each will receive a $5,000 AUI Board of Trustees NAC Bridge Scholarship Award, with AUI and NRAO’s congratulations and best wishes for a smooth start to an exciting new chapter of their lives.

2022 Recipients of the NAC Bridge Scholarship Award

  • Azia Robinson, New Mexico Institute of Mining and Technology, Physics
  • Khalid Mohamed, Boston University, Astronomy
  • Sarra Hayoune, Rutgers University, Physics
  • Camilo Vazquez, George Mason University, Physics and Astronomy
  • Wesley Red, University of Illinois at Chicago, Electrical and Computer Engineering
  • Kiana Whitfield, University of Maryland at College Park, Astronomy

NAC is a competitive program offering summer astronomy research internships to undergraduates and professional development programming and research opportunities throughout the academic careers of NAC alumni. NAC’s goal is to increase the number of students, often underserved by the traditional academic pipeline, in STEM and STEM careers, by creating a diverse network of support for their academic and professional careers from an early stage.

A key component of the NAC program has been the long-term sustained engagement of alums and, perhaps most importantly, the peer and near-peer support that NAC alums offer to each other. NRAO and AUI appreciate the commitment that NAC alums have to each other and to their own professional journeys, and are proud of their individual and collective accomplishments.

About NAC

National Astronomy Consortium (NAC) is a program of the National Radio Astronomy Observatory, a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. NAC is a summer research experience program for undergraduate students in the United States who have been underserved by the traditional academic pipeline. The program aims to increase the number of students in STEM fields by helping them to build networks of support for success early in their academic careers and beyond.

The post AUI and NRAO Announce 2022 NAC Bridge Scholarship Recipients appeared first on National Radio Astronomy Observatory.

Astronomers Find Evidence for Most Powerful Pulsar in Distant Galaxy

Astronomers Find Evidence for Most Powerful Pulsar in Distant Galaxy

Astronomers analyzing data from the VLA Sky Survey (VLASS) have discovered one of the youngest known neutron stars — the superdense remnant of a massive star that exploded as a supernova. Images from the National Science Foundation’s Karl G. Jansky Very Large Array (VLA) indicate that bright radio emission powered by the spinning pulsar’s magnetic field has only recently emerged from behind a dense shell of debris from the supernova explosion.

The object, called VT 1137-0337, is in a dwarf galaxy 395 million light-years from Earth. It first appeared in a VLASS image made in January of 2018. It did not appear in an image of the same region made by the VLA’s FIRST Survey in 1998. It continued to appear in later VLASS observations in 2018, 2019, 2020, and 2022.

“What we’re most likely seeing is a pulsar wind nebula,” said Dillon Dong, a Caltech graduate graduate who will begin a Jansky Postdoctoral Fellowship at the National Radio Astronomy Observatory (NRAO) later this year. A pulsar wind nebula is created when the powerful magnetic field of a rapidly spinning neutron star accelerates surrounding charged particles to nearly the speed of light.

“Based on its characteristics, this is a very young pulsar — possibly as young as only 14 years, but no older than 60 to 80 years,” said Gregg Hallinan, Dong’s Ph.D advisor at Caltech.

The scientists reported their findings at the American Astronomical Society’s meeting in Pasadena, California.

Dong and Hallinan discovered the object in data from VLASS, an NRAO project that began in 2017 to survey the entire sky visible from the VLA — about 80 percent of the sky. Over a period of seven years, VLASS is conducting a complete scan of the sky three times, with one of the objectives to find transient objects. The astronomers found VT 1137-0337 in the first VLASS scan from 2018.

Comparing that VLASS scan to data from an earlier VLA sky survey called FIRST revealed 20 particularly luminous transient objects that could be associated with known galaxies.

“This one stood out because its galaxy is experiencing a burst of star formation, and also because of the characteristics of its radio emission,” Dong said. The galaxy, called SDSS J113706.18-033737.1, is a dwarf galaxy containing about 100 million times the mass of the Sun.

In studying the characteristics of VT 1137-0337, the astronomers considered several possible explanations, including a supernova, gamma ray burst, or tidal disruption event in which a star is shredded by a supermassive black hole. They concluded that the best explanation is a pulsar wind nebula.

In this scenario, a star much more massive than the Sun exploded as a supernova, leaving behind a neutron star. Most of the original star’s mass was blown outward as a shell of debris. The neutron star spins rapidly, and as its powerful magnetic field sweeps through the surrounding space it accelerates charged particles, causing strong radio emission.

Initially, the radio emission was blocked from view by the shell of explosion debris. As that shell expanded, it became progressively less dense until eventually the radio waves from the pulsar wind nebula could pass through.

“This happened between the FIRST observation in 1998 and the VLASS observation in 2018,” Hallinan said.

Probably the most famous example of a pulsar wind nebula is the Crab Nebula in the constellation Taurus, the result of a supernova that shone brightly in the year 1054. The Crab is readily visible today in small telescopes.

“The object we have found appears to be approximately 10,000 times more energetic than the Crab, with a stronger magnetic field,” Dong said. “It likely is an emerging ‘super Crab’,” he added.

While Dong and Hallinan consider VT 1137-0337 to most likely be a pulsar wind nebula, it also is possible that its magnetic field may be strong enough for the neutron star to qualify as a magnetar — a class of super-magnetic objects. Magnetars are a leading candidate for the origin of the mysterious Fast Radio Bursts (FRBs) now under intense study.

“In that case, this would be the first magnetar caught in the act of appearing, and that, too, is extremely exciting,” Dong said.

Indeed some Fast Radio Bursts have been found to be associated with persistent radio sources, the nature of which also is a mystery. They bear a strong resemblance in their properties to VT 1137-0337, but have shown no evidence of strong variability.

“Our discovery of a very similar source switching on suggests that the radio sources associated with FRBs also may be luminous pulsar wind nebulae,” Dong said.

The astronomers plan to conduct further observations to learn more about the object and to monitor its behavior over time.

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

###

Media Contact:
Dave Finley, Public Information Officer
(505) 241-9210
dfinley@nrao.edu

 

The post Astronomers Find Evidence for Most Powerful Pulsar in Distant Galaxy appeared first on National Radio Astronomy Observatory.

Science Results From NRAO Facilities to Be Presented at Multiple AAS 240 Press Conferences

Science Results From NRAO Facilities to Be Presented at Multiple AAS 240 Press Conferences

Seven new scientific results from the Atacama Large Millimeter/submillimeter Array (ALMA), the Very Large Array (VLA), and the Very Large Array Sky Survey (VLASS) will be revealed at multiple press conferences during the 240th meeting of the American Astronomical Society (AAS) between June 13-15, 2022 in Pasadena, California.

The new results range across a wide variety of astronomical phenomena, from star systems to pulsars, and from young galaxies to stellar feedback loops. 

Press conferences will be held in person during the conference, and streamed live on the AAS Press Office YouTube Channel. 

Note: Each press conference consists of a panel of scientists presenting 4-5 unique scientific results. The number listed in parentheses indicates the order of presentation for the listed result. 

All press conferences are listed and will occur in Pacific Time.

Monday, June 13th, 2022 @ 2:15pm PDT — Magnetic Fields and Galaxies

Erin Guilfoil-Cox, Northwestern University (2)
The Twisted Magnetic Field in a Protobinary System”

Embargo access for members of the press must be requested from amandamo@northwestern.edu or kari.frank@northwestern.edu

Tuesday, June 14th, 2022 @ 10:15am PDT — Nearby Disks and Faraway Galaxies

Meredith MacGregor, University of Colorado Boulder (2)
A New ALMA View of the HD 53143 Debris Disk”

Embargo access for members of the press, please contact aoliver@nrao.edu

Tuesday, June 14th, 2022 @ 2:15pm PDT — Galactic Neighbors and Insights from ALMA

Ambesh Singh, University of Arizona (4)
“ALMA Reveals the Molecular Outflows in the Ejecta of VY Canis Majoris”

Embargo access for members of the press, please contact stolte@arizona.edu or mikaylamace@arizona.edu

Hollis Akins, Grinnell College (5)
“ALMA Reveals Extended Cool Gas and Hot Ionized Outflows in a Distant Star-Forming Galaxy”

Embargo access for members of the press, please contact aoliver@nrao.edu

Wednesday, June 15, 2022 @ 10:15am PDT — Stars, Their Environments, and Their Planets

Michael Jones, University of Arizona (1)
“Young, Blue, and Isolated Stellar Systems in the Virgo Cluster”

Embargo access for members of the press, please contact
mikaylamace@arizona.edu or stolte@arizona.edu.  

Tony Wong, University of Illinois Urbana-Champaign (3)
“ALMA Unravels a Star Formation Standoff in the Tarantula’s Gaseous Web”

Embargo access for members of the press, please contact
aoliver@nrao.edu

Wednesday, June 15, 2022 @ 2:15pm PDT — Extragalactic Investigations and Evolved Stars

Dillon Dong, California Institute of Technology (2)
“Discovery of an Extremely Luminous, Decades-Old Pulsar Wind Nebula in the Very Large Array Sky Survey”

Embargo access for members of the press, please contact dfinley@nrao.edu.

The full press conference program is available on the AAS 240 Press Web Site. NRAO Public Information Officers will be available to assist journalists with all listed press conferences during the live conference.

NRAO Media Contacts

Amy C. Oliver
Public Information and News Manager, NRAO
Public Information Officer, ALMA-North America
Tel: +1 434-296-0314
aoliver@nrao.edu

Dave Finley
Public Information Officer, NRAO-VLA, VLBA
(505) 241-9210
dfinley@nrao.edu

In addition to the press conferences, dozens of papers with new and ongoing science results from NRAO facilities will be presented during AAS 240 conference sessions. AAS 240 marks the first full in-person meeting of the AAS since January 2020. 

 

About NRAO

The National Radio Astronomy Observatory (NRAO) is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

 

About ALMA

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of the European Organisation for Astronomical Research in the Southern Hemisphere (ESO), the U.S. National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile. ALMA is funded by ESO on behalf of its Member States, by NSF in cooperation with the National Research Council of Canada (NRC) and the Ministry of Science and Technology (MOST) and by NINS in cooperation with the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space Science Institute (KASI).

ALMA construction and operations are led by ESO on behalf of its Member States; by the National Radio Astronomy Observatory (NRAO), managed by Associated Universities, Inc. (AUI), on behalf of North America; and by the National Astronomical Observatory of Japan (NAOJ) on behalf of East Asia. The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

The post Science Results From NRAO Facilities to Be Presented at Multiple AAS 240 Press Conferences appeared first on National Radio Astronomy Observatory.

Strange Radio Burst Raises New Questions

Strange Radio Burst Raises New Questions

Astronomers have found only the second example of a highly active, repeating Fast Radio Burst (FRB) with a compact source of weaker but persistent radio emission between bursts. The discovery raises new questions about the nature of these mysterious objects and also about their usefulness as tools for studying the nature of intergalactic space. The scientists used the National Science Foundation’s Karl G. Jansky Very Large Array (VLA) and other telescopes to study the object, first discovered in 2019.

The object, called FRB 190520, was found by the Five-hundred-meter Aperture Spherical radio Telescope (FAST) in China. A burst from the object occurred on May 20, 2019, and was found in data from that telescope in November of that year. Follow-up observations with FAST showed that, unlike many other FRBs, it emits frequent, repeating bursts of radio waves.

Observations with the VLA in 2020 pinpointed the object’s location, and that allowed visible-light observations with the Subaru telescope in Hawaii to show that it is in the outskirts of a dwarf galaxy nearly 3 billion light-years from Earth. The VLA observations also found that the object constantly emits weaker radio waves between bursts.

“These characteristics make this one look a lot like the very first FRB whose position was determined — also by the VLA — back in 2016,” said Casey Law, of Caltech. That development was a major breakthrough, providing the first information about the environment and distance of an FRB. However, its combination of repeating bursts and persistent radio emission between bursts, coming from a compact region, set the 2016 object, called FRB 121102, apart from all other known FRBs, until now.

“Now we have two like this, and that brings up some important questions,” Law said. Law is part of an international team of astronomers reporting their findings in the journal Nature.

The differences between FRB 190520 and FRB 121102 and all the others strengthen a possibility suggested earlier that there may be two different kinds of FRBs.

“Are those that repeat different from those that don’t? What about the persistent radio emission — is that common?” said Kshitij Aggarwal, a graduate student at West Virginia University (WVU).

The astronomers suggest that there may be either two different mechanisms producing FRBs or that the objects producing them may act differently at different stages of their evolution. Leading candidates for the sources of FRBs are the superdense neutron stars left over after a massive star explodes as a supernova, or neutron stars with ultra-strong magnetic fields, called magnetars.

One characteristic of FRB 190520 calls into question the usefulness of FRBs as tools for studying the material between them and Earth. Astronomers often analyze the effects of intervening material on the radio waves emitted by distant objects to learn about that tenuous material itself. One such effect occurs when radio waves pass through space that contains free electrons. In that case, higher-frequency waves travel more quickly than lower-frequency waves.

This effect, called dispersion, can be measured to determine the density of electrons in the space between the object and Earth, or, if the electron density is known or assumed, provide a rough estimate of the distance to the object. The effect often is used to make distance estimates to pulsars.

That didn’t work for FRB 190520. An independent measurement of the distance based on the Doppler shift of the galaxy’s light caused by the expansion of the Universe placed the galaxy at nearly 3 billion light-years from Earth. However, the burst’s signal shows an amount of dispersion that ordinarily would indicate a distance of roughly 8 to 9.5 billion light-years.

“This means that there is a lot of material near the FRB that would confuse any attempt to use it to measure the gas between galaxies,” Aggarwal said. “If that’s the case with others, then we can’t count on using FRBs as cosmic yardsticks,” he added.

The astronomers speculated that FRB 190520 may be a “newborn,” still surrounded by dense material ejected by the supernova explosion that left behind the neutron star. As that material eventually dissipates, the dispersion of the burst signals also would decline. Under the “newborn” scenario, they said, the repeating bursts also might be a characteristic of younger FRBs and dwindle with age.

“The FRB field is moving very fast right now and new discoveries are coming out monthly. However, big questions still remain, and this object is giving us challenging clues about those questions,” said Sarah Burke-Spolaor, of WVU.

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

###

Media Contact:
Dave Finley, Public Information Officer
(505) 241-9210
dfinley@nrao.edu

 

The post Strange Radio Burst Raises New Questions appeared first on National Radio Astronomy Observatory.

Scientists on the Hunt for Planetary Formation Fossils Reveal  Unexpected Eccentricities in Nearby Debris Disk

Scientists on the Hunt for Planetary Formation Fossils Reveal Unexpected Eccentricities in Nearby Debris Disk

Using the Atacama Large Millimeter/submillimeter Array (ALMA), astronomers have imaged the debris diskDebris DiskA ring-shaped circumstellar disk of dust and debris in orbit around a star. Seen in the earliest period of the formation of solar systems around stars such as our Sun. of the nearby star HD 53143 at millimeter wavelengths for the first time, and it looks nothing like they expected. Based on early coronagraphic data, scientists expected ALMA to confirm the debris disk as a face-on ring peppered with clumps of dust. Instead, the observations took a surprise turn, revealing the most complicated and eccentric debris disk observed to date. The observations were presented today in a press conference at the 240th meeting of the American Astronomical Society (AAS) in Pasadena, California, and will be published in an upcoming edition of The Astrophysical Journal Letters (ApJL). 

HD 53143— a roughly billion-year-old Sun-like star located 59.8 light-years from Earth in the Carina constellation— was first observed with the coronagraphic Advanced Camera for Surveys on the Hubble Space Telescope (HST) in 2006. It also is surrounded by a debris disk—a belt of comets orbiting a star that are constantly colliding and grinding down into smaller dust and debris— that scientists previously believed to be a face-on ring similar to the debris disk surrounding our Sun, more commonly known as the Kuiper BeltKuiper beltA region of our solar system beyond the orbit of Neptune. It contains many comets, asteroids, and other icy bodies. Pluto is often considered a large resident of this region. Other star systems likely sport similar regions.

The new observations were made of HD 53143 using the highly-sensitive Band 6 receivers on ALMA, an observatory co-operated by the U.S. National Science Foundation’s National Radio Astronomy Observatory (NRAO), and have revealed that the star system’s debris disk is actually highly eccentric. In ring-shaped debris disks, the star is typically located at or near the center of the disk. But in elliptically-shaped eccentric disks, the star resides at one focus of the ellipse, far away from the disk’s center. Such is the case with HD 53143, which wasn’t seen in previous coronagraphic studies because coronagraphs purposely block the light of a star in order to more clearly see nearby objects. The star system may also be harboring a second disk and at least one planet. 

“Until now, scientists had never seen a debris disk with such a complicated structure. In addition to being an ellipse with a star at one focus, it also likely has a second inner disk that is misaligned or tilted relative to the outer disk,” said Meredith MacGregor, an assistant professor at the Center for Astrophysics and Space Astronomy (CASA) and Department of Astrophysical and Planetary Sciences (APS) at CU Boulder, and the lead author on the study. “In order to produce this structure, there must be a planet or planets in the system that are gravitationally perturbing the material in the disk.” 

This level of eccentricity, MacGregor said, makes HD 53143 the most eccentric debris disk observed to date, being twice as eccentric as the Fomalhaut debris disk, which MacGregor fully imaged at millimeter wavelengths using ALMA in 2017. “So far, we have not found many disks with a significant eccentricity. In general, we don’t expect disks to be very eccentric unless something, like a planet, is sculpting them and forcing them to be eccentric. Without that force, orbits tend to circularize, like what we see in our own Solar System.” 

Importantly, MacGregor notes that debris disks aren’t just collections of dust and rocks in space. They are a historical record of planetary formation and how planetary systems evolve over time. and provide a peek into their futures. “We can’t study the formation of Earth and the Solar System directly, but we can study other systems that appear similar to but younger than our own. It’s a bit like looking back in time,” she said. “Debris disks are the fossil record of planet formation, and this new result is confirmation that there is much more to be learned from these systems and that knowledge may provide a glimpse into the complicated dynamics of young star systems similar to our own Solar System.”

Dr. Joe Pesce, NSF program officer for ALMA, added, “We are finding planets everywhere we look, and these fabulous results by ALMA are showing us how planets form – both those around other stars and in our own Solar System. This research demonstrates how astronomy works and how progress is made, informing not only what we know about the field but also about ourselves.”

Resource

“ALMA Images the Eccentric HD 53143 Debris Disk,” MacGregor et al (2022), The Astrophysical Journal Letters, pre-print

Press conference access and recording:

Tuesday, June 14th, 2022 @ 10:15am PDT — Nearby Disks and Faraway Galaxies

A New ALMA View of the HD 53143 Debris Disk”

About NRAO

The National Radio Astronomy Observatory (NRAO) is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

About ALMA

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of the European Organisation for Astronomical Research in the Southern Hemisphere (ESO), the U.S. National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile. ALMA is funded by ESO on behalf of its Member States, by NSF in cooperation with the National Research Council of Canada (NRC) and the Ministry of Science and Technology (MOST) and by NINS in cooperation with the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space Science Institute (KASI).

ALMA construction and operations are led by ESO on behalf of its Member States; by the National Radio Astronomy Observatory (NRAO), managed by Associated Universities, Inc. (AUI), on behalf of North America; and by the National Astronomical Observatory of Japan (NAOJ) on behalf of East Asia. The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

Media Contact:

Amy C. Oliver
Public Information Officer, ALMA
Public Information & News Manager, NRAO
+1 434 242 9584
aoliver@nrao.edu

The post Scientists on the Hunt for Planetary Formation Fossils Reveal Unexpected Eccentricities in Nearby Debris Disk appeared first on National Radio Astronomy Observatory.

ALMA Gets Front-Row Seat to an Ongoing Star-Formation Standoff in the Large Magellanic Cloud

ALMA Gets Front-Row Seat to an Ongoing Star-Formation Standoff in the Large Magellanic Cloud

While using the Atacama Large Millimeter/submillimeter Array (ALMA) to observe large star-forming regions in the Large Magellanic Cloud (LMC), scientists discovered a turbulent push-and-pull dynamic in the star-forming region, 30 Doradus. Observations revealed that despite intense stellar feedback, gravity is shaping the molecular cloud, and against scientific odds, is driving the ongoing formation of young, massive stars. The observations were presented today in a press conference at the 240th meeting of the American Astronomical Society (AAS) in Pasadena, California, and are published in The Astrophysical Journal (ApJ). 

30 Doradus is a large star-forming region located next door to the Milky Way— at just 170,000 light-years away— in the heart of the Large Magellanic Cloud’s famed Tarantula Nebula. It is home to the most massive cluster of stars in the cosmic neighborhood, creating a perfect target for scientists seeking to understand the birth and evolution of stars. At the heart of 30 Doradus lies a sparkling stellar nursery that has witnessed the birth of more than 800,000 stars and protostars, including half a million hot, young, and massive stars. The region is of interest to astronomers studying star formation and galactic evolution because of the ongoing effects of gravityGravityA mutual physical force of nature that causes two bodies to attract each other. and stellar feedback— enormous energy released back into the region by young and massive stars that can slow down star formation— which compete against each other to manage star-formation rates.

New observations of 30 Doradus were made using the highly-sensitive Band 6 receivers on ALMA, an observatory co-operated by the U.S. National Science Foundation’s National Radio Astronomy Observatory (NRAO), and led to a surprising revelation about the molecular cloud. “Stars form when dense clouds of gas become unable to resist the pull of gravity. Our new observations reveal clear evidence that gravity is shaping the thickest parts of the clouds, while also revealing many lower-density cloud fragments which are too turbulent for gravity to exert much influence,” said Tony Wong, a professor at the University of Illinois at Urbana-Champaign and the lead author on the new research. “We were expecting to find that the parts of the cloud closest to the young, massive stars would show the clearest signs of gravity being overwhelmed by feedback, and as a result, a lower rate of star formation. Instead, these observations confirmed that even in a region with extremely active feedback, gravity’s presence is still strongly felt, and star formation is likely to continue.”

To form a clearer picture of what was happening in 30 Doradus, the team divided the cloud into clumps to measure how one part of the cloud differs from another. Since stars typically form in the densest parts of molecular clouds, distinguishing between the less-dense and more-dense clumps was critical to building a clear understanding of what is happening in 30 Doradus. The novel approach revealed a pattern. “We used to think of interstellar gas clouds as puffy or roundish structures, but it’s increasingly clear that they are string-like or filamentary,” said Wong. “When we divided the cloud into clumps to measure differences in density we observed that the densest clumps are not randomly placed but are highly organized onto these filaments. The filaments themselves appear to be shaped by gravity, so are probably an important step in the process of star formation.” 

Unlike the Milky Way, which experiences a relatively slow and steady star formation rate of roughly seven stars— or the equivalent of four solar masses— each year, 30 Doradus’ home galaxy, the LMC, and its star-forming regions go through “boom and bust” cycles, which often results in periods of intensely paced star formation. The team hopes that the new findings, as well as additional future research, will shed light on the differences between the Milky Way and other, more active star-forming galaxies, including how the competition between gravity and feedback shapes molecular clouds and impacts stellar birth rates. 

Remy Indebetouw, an astronomer at NRAO and a co-author of the research said, “30 Doradus contains the nearest massive stellar cluster to Earth. Clusters like this one can act like bombs in galaxies, blowing out gas and even changing their long-term evolution. We want to understand how molecular clouds turn into stars, in detail— how long does it take, how quickly do newly formed stars start to affect their natal cloud, and over what distances, things that are currently not well understood. Observing these clusters will get us one step closer to an answer.”

Wong added that the observations are both helping scientists to understand the broad scientific implications of star formation and revealing the history and future of galaxies. “One of the biggest mysteries of astronomy is why we are able to witness stars forming today. Why didn’t all of the available gas collapse in a huge fireworks show long ago? What we’re learning now can help us to shine a light on what is happening deep within molecular clouds so that we can better understand how galaxies sustain star formation over time.”

Resource

“The 30 Doradus Molecular Cloud at 0.4 Parsec Resolution with ALMA: Physical Properties and the Boundedness of CO Emitting Structures,” Wong et al (2022), The Astrophysical Journal, doi: 10.3847/1538-4357/ac723a

Press Conference Access and Recording

Wednesday, June 15, 2022 @ 10:15am PT — Stars, Their Environments, and Their Planets

“The Structure and Dynamics of the 30 Doradus Molecular Cloud as Revealed by ALMA”

About NRAO

The National Radio Astronomy Observatory (NRAO) is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

About ALMA

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of the European Organisation for Astronomical Research in the Southern Hemisphere (ESO), the U.S. National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile. ALMA is funded by ESO on behalf of its Member States, by NSF in cooperation with the National Research Council of Canada (NRC) and the Ministry of Science and Technology (MOST) and by NINS in cooperation with the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space Science Institute (KASI).

ALMA construction and operations are led by ESO on behalf of its Member States; by the National Radio Astronomy Observatory (NRAO), managed by Associated Universities, Inc. (AUI), on behalf of North America; and by the National Astronomical Observatory of Japan (NAOJ) on behalf of East Asia. The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

Media Contact

Amy C. Oliver
Public Information and News Manager, NRAO
Public Information Officer, ALMA-North America
Tel: +1 434-296-0314
aoliver@nrao.edu

The post ALMA Gets Front-Row Seat to an Ongoing Star-Formation Standoff in the Large Magellanic Cloud appeared first on National Radio Astronomy Observatory.